332 research outputs found

    3D interrelationship between osteocyte network and forming mineral during human bone remodeling

    Get PDF
    During bone remodeling, osteoblasts are known to deposit unmineralized collagenous tissue (osteoid), which mineralizes after some time lag. Some of the osteoblasts differentiate into osteocytes, forming a cell network within the lacunocanalicular network (LCN) of bone. To get more insight into the potential role of osteocytes in the mineralization process of osteoid, sites of bone formation are three-dimensionally imaged in nine forming human osteons using focused ion beam-scanning electron microscopy (FIB-SEM). In agreement with previous observations, the mineral concentration is found to gradually increase from the central Haversian canal toward pre-existing mineralized bone. Most interestingly, a similar feature is discovered on a length scale more than 100-times smaller, whereby mineral concentration increases from the LCN, leaving around the canaliculi a zone virtually free of mineral, the size of which decreases with progressing mineralization. This suggests that the LCN controls mineral formation but not just by diffusion of mineralization precursors, which would lead to a continuous decrease of mineral concentration from the LCN. The observation is, however, compatible with the codiffusion and reaction of precursors and inhibitors from the LCN into the bone matrix

    Formation of Ultracracks in Methacrylate-Embedded Undecalcified Bone Samples by Exposure to Aqueous Solutions

    Get PDF
    Back-scattered electron (BSE) imaging allows the visualization and evaluation of mineralized bone structures down to the micrometer range. To produce undecalcified bone sections with adequate structural and surface integrity, bone specimens are usually resin-embedded, followed by cutting, grinding , and polishing procedures. In samples prepared this way, so-called ultracracks were detected as black clefts in the lamellar bone matrix by BSE-imaging at magnifications ranging from 1000x to 3000x. By charging phenomena in the secondary electron (SE) mode of the scanning electron microscope (SEM), these clefts can be proven to be open cracks in the sample surface, and thus, as being created after embedding. These ultracracks seem to be a swelling effect of the bone matrix when it is exposed to water on the sample surface, followed by shrinking during drying . They did not occur, when water-free preparation techniques, like micromilling, were used and all water contact with the sample surface was avoided. This observation using the BSE-technique in SEM, and the simple method of discrimination between cracks existing before embedding and cracks newly generated during or after embedding, seem important for ultrastructural investigations of mineralized bone tissue, particularly for the evaluation of microcracks after loading or for the study of bone-implant interfaces

    A New Scanning Electron Microscopy Approach to the Quantification of Bone Mineral Distribution: Backscattered Electron Image Grey-Levels Correlated to Calcium KĪ±-Line Intensities

    Get PDF
    The introduction of backscattered electron (BSE) imaging in scanning electron microscopy (SEM) has led to new possibilities for the evaluation of mineral distributions in bone on a microscopic level. The different grey-levels seen in the BSE-images can be used as a measure for the local mineral content of bone. In order to calibrate these BSE-grey-levels (BSE-GL) and correlate them to mineral contents, various attempts, using reference samples with known weighted mean atomic number and/or using simulated bone tissues with known hydroxyapatite concentrations, have been made. In contrast, a new approach is presented here based on measurements of the X-ray intensities of the calcium KĪ±-line on selected areas of real bone samples; the measured intensities are then related to the corresponding BSE-GL. A linear positive correlation between weight percent (wt%) calcium and BSE-GL was found. When the BSE-mode is standardized using carbon and aluminum as references, the different mineral contents in bone samples can be recorded as BSE-GL, calibrated to wt% of calcium or hydroxyapatite (HA), respectively. The resulting mineral concentration histograms have a dynamic range from O to 89 wt% HA and have a binwidth resolution of 0.45 wt% HA. The presented modifications of the BSE method strongly enhance its feasibility in the field of bone research and its application as a special diagnostic tool for bone diseases

    Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone

    No full text
    Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone coexist in healing bone. Similar to all bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes that are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is also hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and correlate spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and the transition zone between the cortical region and callus that developed during 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density with 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling

    The contribution of the pericanalicular matrix to mineral content in human osteonal bone

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (nā€Æ=ā€Æ4) and children (nā€Æ=ā€Æ2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (Ī¼m/Ī¼m3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around āˆ’0.97 fmol Ca per Ī¼m of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per Ī¼m of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.German Federal Ministry of Education and ResearchAUVA (Research Funds of the Austrian Workers Compensation Board, Austria)WGKK (Viennese sickness insurance funds, Austria)

    Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source

    Get PDF
    Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about 105 to 106 times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 Ī¼m) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to Ā±0.17 wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt%Ā Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison

    Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility

    Get PDF
    Osteoporotic fragility fractures were hypothesized to be related to changes in bone material properties and not solely to reduction in bone mass. We studied cortical bone from the superior and inferior sectors of whole femoral neck sections from five female osteoporotic hip fracture cases (74ā€“92Ā years) and five nonfractured controls (75ā€“88Ā years). The typical calcium content (CaPeak) and the mineral particle thickness parameter (T) were mapped in large areas of the superior and inferior regions using quantitative backscattered electron imaging (qBEI) and scanning small-angle X-ray scattering, respectively. Additionally, indentation modulus (E) and hardness (H) (determined by nanoindentation) were compared at the local level to the mineral content (CaInd) at the indent positions (obtained from qBEI). CaPeak (āˆ’2.2%, PĀ =Ā 0.002), CaInd (āˆ’1.8%, PĀ =Ā 0.048), E (āˆ’5.6%, PĀ =Ā 0.040), and H (āˆ’6.0%, PĀ =Ā 0.016) were significantly lower for the superior compared to the inferior region. Interestingly, CaPeak as well as CaInd were also lower (āˆ’2.6%, PĀ =Ā 0.006, and ā€“3.7%, PĀ =Ā 0.002, respectively) in fracture cases compared to controls, while E and H did not show any significant reduction. T values were in the normal range, independent of region (PĀ =Ā 0.181) or fracture status (PĀ =Ā 0.551). In conclusion, it appears that the observed femoral neck fragility is associated with a reduced mineral content, which was not accompanied by a reduction in stiffness and hardness of the bone material. This pilot study suggests that a stiffening process in the organic matrix component contributes to bone fragility independently of mineral content
    • ā€¦
    corecore